Population of infinite size. Total call request rate $=\lambda$.
(very large) (The rate for each wee is very small.)
" $x^{6}=$ call request time
$(R V) \nmid \operatorname{lerg}_{1}+i_{1}^{\prime}$ ' of this indicate's call duration.

number of occupied channels at time t
Inter-request time $=$ time between two adjacent call request is $\varepsilon(\lambda)$

new call is generated at rate λ.

Call duration is $\varepsilon(\mu)$
(each) old call ends at "rate" μ
small-slot analysis (discrete time approximation)
Suppose $k(t)=k$. Describe $k(t+\delta)$. $\uparrow_{\text {small time increment. }}$
at time t, there are k ongoing calls.
At time $t+\delta$, only three events can happen (if γ is small):

the ending rate is μ
for each call.
so, for k calls, the total ending rate is $k \mu$
\Rightarrow Markov chain

Next step: study how systems characterized by Markov chains behave.

